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Abstract

Detection engineering is an emerging specialty within cybersecurity focused on identifying
malicious behavior through analysis of system and network data. Traditional pattern-matching
techniques often fall short when it comes to detecting novel or subtle attack patterns. In
this study, we explore a novel approach inspired by facial recognition systems—specifically,
eigenvector-based image profiling—to model and distinguish between different types of network
activity. By converting NetFlow-derived feature vectors into normalized image-like arrays,
we apply Principal Component Analysis (PCA) to build ”eigenprofiles” for four broad attack
categories: credential-based, denial-of-service, exploit/malware-based, and application-level
abuse. Our results show clear separation in reconstruction error distributions between benign
traffic and attack traffic, offering a viable foundation for unsupervised anomaly detection
based on behavioral reconstruction error.

1 Problem Statement

Modern cyber defense strategies rely heavily on development of detection rules and signatures
by Security Operations Center (SOC) teams. This process is time-intensive, resource-heavy,
and often yields diminishing returns due to high false positive rates and poor generalization
across evolving attack surfaces and changing internal networks. Traditional detection systems
typically match static patterns or threshold anomalies in specific log matching—methods
that fail to capture nuanced or emerging threat behaviors. Even with substantial investments
in SIEM infrastructure and expert tuning, alert fatigue is a frequent problem.

This work explores a novel detection approach inspired by facial recognition: the use of image-
based eigenvector profiling to model and detect network attacks. By transforming NetFlow
feature vectors into fixed-size image-like inputs, we leverage Principal Component Analysis
(PCA) to generate eigen-profiles—low-dimensional representations of attack behavior clusters.
These eigen-profiles are built across four attack categories: credential abuse, denial-of-service,
exploit/malware, and application-layer attacks. We then analyze reconstruction errors to
evaluate whether this method can (1) distinguish malicious traffic from benign traffic, and (2)
differentiate between attack types. If successful, this technique may provide a scalable and
interpretable alternative to traditional rule-based detection, enabling better signal extraction
without the need for labeled training data.

2 Related Work

Research in network anomaly detection has long leveraged dimensionality reduction and
unsupervised methods—like PCA—to identify unusual traffic patterns. Our approach is
inspired by—but distinct from—the following key works:

1. In-Network PCA (Huang et al., 2006): Introduced the concept of projecting traffic
matrices onto PCA’s residual subspace for anomaly detection, even at distributed nodes,

2



with communication-efficient protocols. It laid the groundwork for using global versus
local principal components to distinguish anomalies in network flow data.

2. Sensitivity of PCA (Rexford et al., 2014): Demonstrated that PCA-based detection
performance can be highly sensitive to subspace dimensionality and threshold settings,
and that anomaly contamination of the ”normal” subspace can degrade.

3. Robust PCA for Cyber Networks (Paffenroth et al., 2018): Applied robust PCA to
network packet captures, separating flows into low-rank behavior and sparse anomalies.
It successfully detected previously unseen attacks without labeled examples.

4. NetFlow Botnet Detection (Subramaniam et al., 2021): Extracted NetFlow features
with statistical and deep learning models to detect botnet command-and-control activity,
showing interpretability and precision.

5. Unsupervised PCA, Autoencoder & Isolation Forest: This work evaluates the compar-
ative strengths of several unsupervised methods on TCP flow datasets, finding PCA
yields useful, though less discriminative, embeddings.

Though PCA has been widely used for dimensionality reduction in networks, very few
approaches visualize network data as images and apply eigenvector profiling akin to facial
recognition. To our knowledge, our work is unique in projecting attack-based NetFlow clusters
into image space and applying eigenfaces-style decomposition to create attack-class profiles.

3 Methodology

3.1 Data Overview

The dataset used in this project originates from the Canadian Institute for Cybersecurity in
partnership with the Communications Security Establishment of Canada. It is part of the
CIC-IDS-2018 benchmark data set, which includes labeled (attack/benign) NetFlow records
from multiple days of simulated network activity.

For this analysis, a subset of ten .parquet consisting of five distinct attack types were grouped
into four categories: Application-level attacks, Credential-based attacks, Denial-of-Service
(DoS/DDoS), and Exploitation/Infiltration-based attacks. These files were manually grouped
and remixed to create unified datasets. The reason for this grouping was to have different
’views’ of a attack in order to ’train’ our models. This would be similar to having different
angles of someones face for facial recognition.

Additionally, a dataset containing only benign traffic was also extracted for use in testing.
This would test inter-group refection to see essentially if any model was over generalizing and
would have low error on known ’benign’ or none attack data.

Each NetFlow record contains 77 features, containing information such as packet counts, byte
counts, duration, and statistical metrics like mean and standard deviation. All features were
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standardized to continuous values in the range [0, 1] using min-max normalization.

3.2 Feature Engineering

In order to transformation each row into image-like representations suitable for PCA projection,
each NetFlow record, consisting of 77 normalized features, was zero-padded to form a
90,000-dimensional vector and reshaped into a 300×300 grayscale image-like matrix. This
transformation preserved feature ordering and allowed compatibility with PCA techniques
traditionally used for image-based data. This simulated a 2D spatial structure without relying
on any underlying visual patterns from the raw network data.

Dimensionality reduction was applied using Principal Component Analysis (PCA) to extract
orthogonal basis vectors from benign training data. PCA was chosen over techniques such as
UMAP due to its significantly lower computational cost and better scalability across large
datasets. Preliminary testing showed no measurable performance benefit from UMAP when
applied to small-to-medium sample sizes, while PCA provided stable reconstruction behavior
and meaningful variance retention.

Each attack group’s eigen model consisted of:

• A mean vector for centering

• A set of eigenvectors representing principal directions of variance

• A projection/reconstruction function for scoring new samples

This approach allowed each group to define its own behavioral signature based purely on
visual representation of attack data.

3.3 Modeling

This project used eigenface decomposition from facial recognition to model benign network
behavior and detect anomalies. The methodology consists of the following core steps:

All attack NetFlow records were flattened and converted into fixed-length 300×300 matrices.

For each high-level attack category a group-specific PCA model was trained producing:

• A mean vector

• A reduced set of eigenvectors (principal components) capturing dominant variance

• A projection-reconstruction function for scoring unseen samples

Scoring was accomplished by projecting samples into the eigen-space of each group-specific
model and reconstructed. The L2 norm of the reconstruction error ||x− x̂||2 was calculated
for each group. The group with the lowest reconstruction error was selected as the predicted
group since the lower the reconstruction error, the more likely a sample is benign and matches
the learned profile.
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All PCA models were fit on several hundred thousand benign samples. Because PCA is a
linear projection and reconstruction is a matrix multiplication, inference scales linearly with
data size.

3.4 Evaluation Criteria

Each model is evaluated based on how well it reconstructs data samples within and across
attack groups, as well as how it handles benign data. Specifically, we apply the following
criteria:

• Intra-group fidelity: A model should achieve the lowest reconstruction error when
reconstructing samples from the same attack group it was trained on. This demonstrates
the model’s ability to accurately represent behaviors within its own group.

• Inter-group rejection: A model should yield higher reconstruction errors when
attempting to reconstruct samples from other attack groups or from benign traffic. This
helps ensure the model is not overfitting or generalizing incorrectly.

Reconstruction error is computed using the L2 norm (Euclidean distance) between the original
input vector x and its reconstruction x̂ produced by the PCA transformation. The formula
for the reconstruction error for a single sample is:

L2 Error = ∥x− x̂∥2 =

√√√√ n∑
i=1

(xi − x̂i)2

where:

• x ∈ Rn is the original input vector (flattened image representation of the NetFlow
sample)

• x̂ ∈ Rn is the reconstructed vector from the PCA model

• n is the number of features (77 in this dataset)

This L2 norm provides a continuous and interpretable measure of how well a sample fits into
the subspace defined by each PCA-derived eigenprofile. Lower reconstruction errors imply
a better fit, while higher errors indicate deviation from the learned structure. This error is
used both to classify attack type via minimum error and to evaluate anomaly likelihood.
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4 Results

4.1 Application Attack Group

(a) Web Attack Day 1 (b) Web Attack Day 2

Figure 1: Sample of Application Attack Images

Figure 2: Eigen Profiles for Application Attack Group

Figure 3: Original vs Reconstructed

6



4.2 Credential Attack Group

Figure 4: Sample Credential Attack Image

Figure 5: Eigen Profiles for Credential Attack Group

Figure 6: Original vs Reconstructed
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4.3 Service Denial Attack Group

(a) DDoS Attack
Day 1

(b) DDoS Attack
Day 2

(c) DoS Attack Day
1

(d) DoS Attack Day
2

Figure 7: Sample of Denial Attack Images

Figure 8: Eigen Profiles for Denial Attack Group

Figure 9: Original vs Reconstructed Sample

8



4.4 Exploit Attack Group

(a) Botnet Attack
Day 1

(b) Infil Attack Day
2

(c) Infil Attack Day
1

Figure 10: Sample of Exploit Attack Images

Figure 11: Eigen Profiles for Exploit Attack Group

Figure 12: Original vs Reconstructed Sample
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4.5 All Groups Results

Figure 13: Reconstruction Error by Attack Group Box Plot
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File Name Actual Predicted Error
Web2-Friday test1.png application application 2767.61
Web2-Friday test3.png application application 2981.84
Web2-Friday test2.png application application 2789.34
Web1-Thursday test1.png application application 3050.41
Web1-Thursday test3.png application application 2977.45
Web1-Thursday test2.png application application 2999.30
Bruteforce-Wednesday test1.png credential credential 3344.20
Bruteforce-Wednesday test2.png credential credential 3270.69
Bruteforce-Wednesday test3.png credential credential 3227.02
DDoS2-Wednesday test2.png denial denial 1926.01
DoS2-Friday test1.png denial denial 2964.78
DDoS2-Wednesday test3.png denial denial 1908.37
DDoS2-Wednesday test1.png denial denial 1913.15
DoS2-Friday test2.png denial denial 2965.25
DoS2-Friday test3.png denial denial 2964.54
DDoS1-Tuesday test2.png denial denial 3326.33
DoS1-Thursday test2.png denial denial 3654.82
DoS1-Thursday test3.png denial denial 3617.65
DDoS1-Tuesday test3.png denial denial 3962.46
DDoS1-Tuesday test1.png denial denial 3965.42
DoS1-Thursday test1.png denial denial 3689.68
Botnet-Friday test1.png exploit exploit 3728.97
Botnet-Friday test2.png exploit exploit 3129.00
Botnet-Friday test3.png exploit exploit 3134.76
Infil1-Wednesday test1.png exploit exploit 3503.59
Infil1-Wednesday test3.png exploit exploit 3661.05
Infil1-Wednesday test2.png exploit exploit 3686.89
Infil2-Thursday test3.png exploit exploit 3864.29
Infil2-Thursday test2.png exploit exploit 4074.26
Infil2-Thursday test1.png exploit exploit 3793.24

Table 1: Reconstruction Error by Attack Group
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Figure 14: Testing Against Remixed Attack-Only Data

Figure 15: Testing Against Benign-only Data

5 Findings

The results across the four major attack groups demonstrate that eigenvector-based recon-
struction produces consistent and clear separation between benign and malicious NetFlow
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datasets. Samples from each attack data grouping of their original image, igenprofiles, and
reconstruction comparisons can be seen between Figure 1 and Figure 12. When samples were
reconstructed using their own group-specific PCA models, intra-group reconstruction error
was notably lower than when reconstructed by PCA models from other groups. This can
be observed in Figure 13 and Table 1 where each group had its lowest error with correct
corresponding group type.

In order to evaluate how one model might overly score data from another attack type, each
model was tested against all attack data from the other attack datasets. The results are
summarized in Figure 14 where each model high error rate with a range between 58,250 and
60,000. This indicate the models are specific to their attack behaviors.

Figure 1In Figure 15, the opposite was tested: benign-only data was passed through each
attack-specific model. Again the expected result was high reconstruction error across all
attack-specific PCA models. This supporting the hypothesis that these eigenprofiles are
specific enough to reject non-attack traffic. The separation in reconstruction error between
benign and attack traffic reinforces the feasibility of using this approach for unsupervised
anomaly detection.

A key observation was the alignment of reconstruction error with attack type. Each group’s
PCA model was most accurate at reconstructing its own attack type, and less so for others.
This suggests potential for future classification or clustering systems using these latent
representations.

Limitations of this approach include:

• The attack datasets vary in volume and complexity. Some attack groups had more data
or clearer signals, which may influence PCA performance.

• While PCA provides mathematically interpretable components, the semantic meaning
of individual principal vectors remains opaque for operational security teams. In the
real world these results would need to be paired with more descriptive information in
order for them to be actionable for most SOC environments.

• All datasets used in this project were heavily curated. It remains unclear how well this
approach scales to real-world traffic or heterogeneous environments.

Future work could involve exploring alternative dimensionality reduction methods (e.g.,
t-SNE, UMAP), evaluating sensitivity to feature selection, or combining PCA with temporal
modeling. Testing under real-world constraints—such as red-team emulation or live SOC
monitoring—would further validate its operational value.

6 Conclusion

This project demonstrates that eigenvector-based reconstruction of image-encoded NetFlow
data can effectively model and differentiate between multiple types of cyberattacks. By
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leveraging techniques originally developed for facial recognition, we constructed unique
behavioral “eigenprofiles” for four broad classes of network threats. These profiles enabled
accurate identification of their corresponding attack types and successfully rejected benign
samples through high reconstruction error.

The methodology used in this project is unsupervised, scalable, and computationally lightweight,
requiring no labeled data or handcrafted rules. These characteristics make it a promising
candidate for further development in modern security operations, especially as SOCs look to
reduce alert fatigue and automate detection pipelines.

While the current study used static, labeled datasets in a controlled environment, the results
provide a compelling case for extending this work into production-grade threat detection
systems. With additional testing and refinement, eigen-profiling may offer a new pathway for
interpretable, resilient, and high-fidelity network defense.
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